
Page 1 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

OPENPRICING AND OPENRISK MANUAL

Andrew Colin

Flametree Technologies

Page 2 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

This page intentionally left blank

Page 3 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

CONTENTS

Introduction .. 5

Limitations in fixed income analytics platforms ... 5

Perturbational attribution ... 5

First-principles attribution ... 6

OpenPricing .. 6

OpenRisk .. 6

Plug-ins ... 8

What is the difference between an OpenPricing plug-in and an OpenRisk plug-in? 8

Using plug-ins ... 9

Using an OpenPricing plug-in ... 9

Using an OpenRisk plug-in ... 9

Data requirements .. 10

Overview .. 10

Security master data .. 10

Effective dating .. 12

User-defined fields ... 12

Weight and returns data .. 12

Yield curve data .. 14

Index data ... 14

Using plug-ins ... 15

Plug-ins with no arguments.. 15

Supplying additional information to plug-ins ... 15

Types of additional argument .. 15

Values of volatile market quantities .. 15

Values of yield curves .. 16

Values of indices .. 17

Multiple arguments .. 17

Passing historical data into plug-ins ... 17

Appendix A: Writing plug-in functions .. 19

Overview .. 19

Writing an OpenPricing plug-in .. 20

Data structures .. 20

Using additional arguments ... 21

Page 4 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

Support functions ... 21

Sample OpenPricing plug-in code .. 22

Writing an OpenRisk plug-in ... 23

Sample OpenRisk plug-in code ... 23

Data integrity in plug-ins .. 25

Compiling and linking plug-ins ... 25

Installing a plug-in .. 25

Verifying plug-in compatibility ... 26

Page 5 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

INTRODUCTION

This manual describes OpenPricing and OpenRisk, a recently developed set of additions to Flametree's FIA

fixed income attribution engine.

- OpenPricing allows new security types to be defined via external pricing functions. These can be

based on proprietary code, called from a third-party library, or written from scratch.

- OpenRisk allows the user to define new sources of risk in attribution reports, via external risk

functions.

OpenRisk and OpenRisk allow FIA's capabilities to be extended and customized by Flametree’s users to keep

up with developments and innovations in the marketplace, thereby future-proofing your investment in our

attribution technology.

LIMITATIONS IN FIXED INCOME ANALYTICS PLATFORMS

A common problem in the provision of fixed income analytics platforms is the pace of development in the fixed

income markets. Frequently, new security types become available that cannot be handled by existing analytics

libraries and software. In addition, the sheer number and complexity of security types traded in today's

markets means that provision of detailed, accurate security modelling can exceed the capabilities of even the

largest analytics providers.

For attribution, the main requirement is the ability to measure the effect of changes in the underlying market

on the price, and hence the return, of an arbitrary security. Here we describe the two main approaches to this

problem.

PERTURBATIONAL ATTRIBUTION

One solution is the introduction of 'one-size-fits-all' algorithms, in which a perturbational approach is used as a

proxy for a full pricing function. Under this approach, a set of sensitivity measures are supplied which, when

combined with appropriate market movements, provide close approximations to security-level returns.1

This approach has been widely adopted by vendors of attribution software. However, it requires that

sensitivity measures such as modified duration, convexity and yield to maturity be supplied for all securities at

all dates, which can cause severe operational difficulties (volume, accuracy, workflow).

In addition, the use of a perturbational model requires customization for particular security types. For

instance,

- an inflation-linked bond requires an additional source of return due to inflation carry;

- a floating rate note has two different measures of sensitivity to interest rate changes;

- an Australian bond future generates no carry return.

All these idiosyncrasies must be known and accounted for before accurate attribution analysis can begin. This

technique therefore only partially solves the problem of new asset types, but does so at considerable cost to

the user.

1 For a full account of the mathematics of perturbational models, see Colin, A., Mastering Attribution in
Finance, FT Press, 2015

Page 6 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

A further disadvantage of the perturbational model is that it models securities as a single cash flow. This can

lead to substantial loss of accuracy for amortizing bonds and other security types with complex cash flow

structures, such as MBS and ABS.

FIRST-PRINCIPLES ATTRIBUTION

An alternative approach is to supply individual pricing functions for each asset class, to calculate the timing

and amounts of all cash flows, and to price these cash flows using standard discounting approaches. The

security price is then the sum of the values of its discounted cash flows.

This approach uses order of magnitudes less data than the perturbational approach, since no risk numbers are

required. More computation is required, but this is seldom a problem given low CPU costs.

The only disadvantage of this approach is the user must accept the vendor's pricing model. Updates and

enhancements are at the discretion of the vendor, so the decision to lock in to a particular vendor can be a

business-critical decision.2

OPENPRICING

FIA addresses this problem by writing the pricing library as a functionally distinct component from the core

application. Each security modelled is linked to a particular pricing function that is provided in an external

pricing library, typically a dynamic link library (for Windows) or a shared object (for Linux).

Unlike other commercial attribution systems, the user is free to write new pricing functions can be written and

called from within FIA, using the API described in this document. Although it may never be necessary to use

this ability, the user

The advantages of this separation between pricing and attribution are several-fold:

- New pricing functions for new instruments can be written and integrated within days, ensuring

analytics support can keep up with new developments in the market.

- Changes can be made without reference to the vendor, retaining client control over deployment of

new security types.

- Custom pricing functions and libraries can be added at will. If the user has a third-party or proprietary

pricing library used for risk and hedging, this library can also be called from FIA.

OpenPricing therefore solves the problem of vendor lock-in, by allowing the user to take complete control of

all pricing models used.

The requirement to use the OpenPricing API may never arise, as we supply a comprehensive library of security

types. However, if

OPENRISK

FIA calculates all quantities that are related to the level of, or movements in, the yield curves that determine a

security's price. These include

2 FIA supports both approaches. If no pricing function is supplied, the security's returns are assumed to be
modelled by the perturbational equation, in which case risk numbers must be supplied.

Page 7 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

- carry return, generated by the passage of time

- curve return, generated by movements in the security's underlying risk-free curve

- credit return, generated by changes in the spread between the security's risk-free curve and its pricing

curve

FIA also calculates a range of other minor curve-related effects, such as rolldown and convexity.

The common factor amongst all these returns is that they may be calculated from changes in the security's

price. For instance, carry return may be calculated by pricing a security at the beginning and end of an interval

but keeping all curve levels unchanged. In this case the only variable to change is time, so any change in the

price of the security is generated by elapsed time.3

Similarly, curve return is calculated by pricing the security with two different sets of yield curves but at the

same date. The change in price, and hence return, arising from the change in curve level is allocated to curve

return.

These sources of return correspond to the main risks for the vast majority of fixed income instruments.

However, there are a significant number of instruments that can generate return from additional non-curve

risks. These include

- Inflation carry for inflation-linked securities. This return is generated by the indexation of the bond. As

inflation pushes up prices, the coupons and maturity payment of the bond rise in step. The extra

return generated by this feature is not driven by any yield curve, and must be calculated using values

of the inflation index associated with the bond.

- Interest return on cash holdings. Although cash deposits generate return for the investor, this return

cannot be measured using changes in the price of the security, as the price of cash is always the same.

- Paydown. Paydown return is generated when the principal on an amortizing security is repaid at a

faster rate than expected. Depending on whether the security is trading at a premium or a discount,

paydown return can be positive or negative.

- Returns from options. In principle, one could measure the return due to a bond's embedded option

from changes in the bond's OAS (option-adjusted spread), minus the effect of any curve spreads. In

practice, this would result in considerable uncertainty if the level of the credit curve is not known

precisely. In addition, this method would not provide any further information on the returns

generated by the bond's embedded option due to its idiosyncratic risks (passage of time, first and

second order price changes in the underlying security, interest rates, volatility).

FIA therefore allows the user to define additional sources of risk for individual securities. For each source of

risk, a risk plug-in is defined that calculates the return for the security due to that risk. When the attribution

report is run, that source of return is shown on the attribution report.

3 In practice, it is preferable to calculate the security's yield to maturity and to calculate the return from that,
which avoids issues with coupon timing; but the principle is the same.

Page 8 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

PLUG-INS

OpenPricing and OpenRisk are implemented using plug-in functions.

A plug-in is a small stand-alone program that reads in the values of quantities such as the current date, the

structural measures of a security such as its maturity date and coupon, and the current yield curve for that

security. An OpenPricing plug-in returns a security price at a given date, while an OpenRisk plug-in calculates a

rate of return between two dates.

Each plug-in has a unique name describing the quantity that it calculates. For instance,

- generic_bond_price returns the dirty price of a generic bond

- black_scholes_delta returns the delta of an equity option priced using the Black-Scholes model

- Inflation supplies the return due to inflation carry for a given date interval for an inflation-linked

bond.

Plug-ins exist inside compiled libraries. A single library can contain many plug-ins, or each plug-in can reside

within its own library.

FIA is designed so that if the name of a plug-in is supplied in a security master record, then that plug-in is used

when running attribution on that security. In effect, the user programs the FIA to use a particular pricing

algorithm, or to calculate a desired set of returns, simply by supplying the names of the required plug-ins.

FIA supplies a ready-to-use library of plug-ins that cover most client requirements. Custom plug-ins can also be

written by the user. Refer to Appendix A for more information on writing plug-ins.

WHAT IS THE DIFFERENCE BETWEEN AN OPENPRICING PLUG-IN AND AN OPENRISK PLUG-IN?

An OpenPricing plug-in calculates a price of a security at a given time, while an OpenRisk plug-in calculates the

return of a particular risk between two dates.

Plug-ins for OpenPricing and OpenRisk share many features, so we treat them together in the following

sections. Their main difference lies in their function signature. An OpenPricing plug-in has the function

signature

double f(long t, FT_SECURITY_DATA s, FT_YIELD_CURVE c, ...);

while an OpenRisk plug-in has the function signature

double f(long start_t, long end_t, FT_SECURITY_DATA s, FT_YIELD_CURVE c, ...);

Page 9 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

USING PLUG-INS

USING AN OPENPRICING PLUG-IN

To use an OpenPricing plug-in for pricing, write the name of the plug-in function to the ‘Pricing’ column

(column 5) in the security master table. Note that

- At most one OpenPricing function can be written in this field.

- The OpenPricing function must exist within a pricing library

- The OpenPricing function cannot have been defined more than once.

If the ‘Pricing’ column is left blank, FIA assumes that the security is to be modelled using a perturbational

model, in which case a yield to maturity and a modified duration must be supplied for all dates in the weights

and returns table.

If any of these conditions are not met, FIA will exit with a diagnostic message when you try to run. Otherwise,

FIA will use the named plug-in whenever the current security has to be priced.

USING AN OPENRISK PLUG-IN

To use an OpenRisk plug-in to calculate additional returns, write the names of the plug-in functions to the ‘Risk

functions’ (column 6) column in the security master table, with additional arguments if required. Note that

- Any number of OpenRisk functions can be written in this field, as long as their names are separated by

a vertical pipe ('|') symbol.

- The OpenRisk function must exist within a library

- The OpenRisk function cannot have been defined more than once.

If any of these conditions are not met, FIA will exit with a diagnostic message when you try to run. Otherwise,

FIA will calculate the additional returns specified by the list of OpenRisk functions.

Page 10 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

DATA REQUIREMENTS

OVERVIEW

FIA uses four two-dimensional arrays of information as its starting point, referred to for convenience as tables.

These are

- the security master table

- the weights and returns table

- the yield curve data table

- the index data table.

Not all fields need be populated to run the FIA, depending on the plug-ins used. For instance, if the pricing

plug-ins only use yield curves, the market data table can be left empty. Conversely, if all securities are priced

using a supplied yield to maturity from the market data table, there is no need to supply yield curve data.

In addition, some table fields may be calculated rather than supplied from external sources. For instance, if an

option requires the value of an underlying security’s annualised volatility, then the user may opt to calculate

this quantity from a supplied return within a plug-in. This capability can substantially reduce FIA’s data

requirements.

SECURITY MASTER DATA

The security master table contains information about each security, including the names of the security pricing

function (used by OpenPricing) and any supplementary risk functions (used by OpenRisk).

Column Field Type Description Sample Rules

1 Security ID String Unique identifier
for security

CASH

DE0000015100

Must have at least
three characters

2 Security
name

String Name of security MEGACORP 5% 1st JAN 2050 Must have at least
three characters

3 Classification String Names of bucket
and
corresponding
value

COUNTRY=US|INDUSTRY=TELECOMS

4 Effective date Date Date at which
record becomes
effective. If no
value is recorded,
record is assumed
active over all
dates

20-DEC-2016 Can be blank

5 Pricing
function

String Plug-in names to
be evaluated for
this security, with
arguments if
required

GENERIC_BOND_PRICE

GENERIC_BILL_PRICE

May contain a valid
plug-in name. If
field is blank, a
perturbational
calculation is
performed.

Page 11 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

6 Risk functions String Name of risk
function(s)
specifying which
addition risks are
to be calculated
for this security.

INFLATION

DELTA|GAMMA|THETA|RHO

Can either be left
empty, or contain
the names of one
or more OpenRisk
functions. If more
than one function is
recorded, names
must be separated
by a pipe (‘|’)
symbol.

7 Credit rating String Credit rating of
security

AAA, AA-, B+

8 Effective
exposure

Integer Flag indicating
whether effective
exposure
multiplier is zero
or one

0,1 Should be zero for
futures. If left
unset, defaults to 1.

9 Currency String 3-character
currency code

AUD, USD, GBP Currency codes
must follow the ISO
4217 standard

10 Residual
sector

String Name of returns
category into
which to write
residual return for
current security

[Blank]

Optionality return

Country spread duration

11 Curve String Name of yield
curve used by this
security for
pricing

USD_CURVE Must be defined in
yield curve table

12 Start date Date Date at which
security’s cash
flows start.

15-FEB-2020 Can be blank

13 Maturity date Date Date at which
security matures
and its cash flows
stop

15-Dec-2025 Must either be
blank or a string
that can be parsed
as a date, using the
DateFormat or
SecurityDateFormat
strings

14 Coupon Real Annual coupon 0.05 Must be provided
as a decimal. A 5%
coupon is recorded
as 0.05.

15 Frequency Integer Number of
coupons per year

2

16 Strike Real Strike price for
option

100.00

17 Term Real Term of security
in years. Only
applicable to
sinking securities

30

18 PSA rate Real Repayment rate
for securities that

0.025

Page 12 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

use the PSA
prepayment
model

19 Paydown Real The fraction of
the bond’s
principal that is
outstanding at
the given
effective date

0.85

20-148 User-defined Real User-defined
terms

0.54

Table 1: Security master table

EFFECTIVE DATING

The structural parameters of many securities change over time. To model this occurrence, FIA allows multiple

records with the same security identifier (field 1) but different effective date (field 3). Each record becomes

active on and after the effective date, superseding any previous record.

USER-DEFINED FIELDS

Fields in columns 16 to 144 are user-defined.

In some cases, additional parameters are needed to price a security, in addition to the standard measures

recorded in columns 6 to 15. These parameters can be stored in user-defined fields, from where they are

passed automatically to all plug-ins.

WEIGHT AND RETURNS DATA

This may not be required at all. However, if (for instance) a security has been defined so that its pricing

function requires a yield to maturity, it should be recorded in this table.

The pricing and risk data table is also used to store quantities such as the price of an underlying security, if this

is required to price an option or other derivative. This table is used to store security-specific quantities that

may change on a daily basis.

In principle, all the quantities in this table may be calculated rather than supplied. However, in many cases it

may be more convenient, or consistent with market practice, to supply one or more starting points from

market data.

Column Field Type Description Sample Rules Required

1 Date Date Unique identifier for
security

CASH

DE0000015100

Must have at
least three
characters

Yes

2 Portfolio String Portfolio in which
current security is held

STF1 Must have at
least three
characters

Yes

3 Security ID String Name of security DE0000123456 Must have at
least three
characters

Yes

Page 13 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

4 Market
weight

Real Weight of current
security in portfolio

1200

0.1

Can be an asset
allocation or a
market value. If
sum over
portfolio is not 1,
values are
renormalized

Yes

5 Base currency
return

Real Base currency return
of security over
current interval

0.01 Must be entered
in absolute terms
(eg 0.56% is
recorded as
0.0056)

Yes

6 Local currency
return

Real Local currency return
of security over
current interval

-0.0145 Must be entered
in absolute terms
(eg 0.56% is
recorded as
0.0056)

Yes

7 YTM Real Yield to maturity No

8 Modified
duration

Real First-order sensitivity
of price to risk-free
interest rate changes

 No

9 Convexity Second-order
sensitivity of price to
risk-free interest
changes

 No

10 OAS Real Option-adjusted
spread

 No

11 Spread
duration

Real First-order sensitivity
of price to interest
rate spread changes

 No

12 Z-spread Real Z-spread No

13 Price Real Price of security at
current date

 No

14 Volatility Real Annualised volatility No

15 Delta Real First order sensitivity
of an option’s price to
changes in the price of
the underlying

 No

16 Gamma Real Second order
sensitivity of an
option’s price to
changes in the price of
the underlying

 No

17 Theta Real Sensitivity of an
option’s price to
changes in time

 No

18 Rho Real Sensitivity of an
option’s price to
changes in risk-free
interest rates

 No

Page 14 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

19 Vega Real Sensitivity of an
option’s price to
changes in volatility

 No

Table 2: Market data table

YIELD CURVE DATA

This table contains all information on yield curves.

Column Field Type Description Sample Rules

1 Date Date Unique identifier for curve CASH

DE0000015100

Must have at least
three characters

2 Curve ID String Name of curve USD Treasury curve Must have at least
three characters

3 Maturity Double Tenor point on yield curve, in
years

10.5 Must be a real number

4 Yield Double Value of yield curve at given
tenor

0.0543 Must be provided as a
decimal. A 5% yield is
recorded as 0.05.

Table 3: Yield curve table

Field ‘Yield’ can contain par or zero curve data, depending on requirements

INDEX DATA

This table contains single-valued time series such as the value of a stock index, LIBOR, BBSW, or inflation

indices. Index data can also be used to record paydown schedules for individual securities and similar security-

specific information.

Column Field Type Description Sample Rules

1 Date String Date 23-Dec-2016

2 Index Date Unique identifier for index LIBOR Must have at least
three characters

3 Value Real Value of index 0.00344

Table 4: Index table

Page 15 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

USING PLUG-INS

The parse expression contains the name of one or more plug-in functions. These specify which calculated

quantities will be computed for the current security.

The parse expression can vary between securities, depending on which quantities are required.

PLUG-INS WITH NO ARGUMENTS

Internally, each function has three default inputs:

- Current dates

- Security master information

- Yield curve

These inputs are set up within FIA and are always supplied by default to all plug-ins.

This is sufficient information for the majority plug-in functions to be evaluated. For instance, a generic

corporate bond that is priced using discounted cash flows can have its coupon and maturity dates calculated

using the security master information. The current value of the bond’s future cash flows can be calculated by

using appropriate discount rates from the supplied yield curve, and the bond’s current price will then be their

sum. In this case, the plug-in’s name is all that is required in the bond’s pricing function field.

SUPPLYING ADDITIONAL INFORMATION TO PLUG-INS

In some cases, more information must be supplied to call a plug-in, in addition to the three default inputs

described above. For instance

- a floating rate note requires the value of an interest rate index such as LIBOR in order to calculate its

coupons

- ,

- an option requires the price and volatility of the underlying security

None of these additional inputs are available from the security definition or the single yield curve associated

with the security. Therefore, any further information required by a plug-in must be passed to the function

using additional arguments.

TYPES OF ADDITIONAL ARGUMENT

FIA is designed so that any information available in its data tables can be passed to a pricing function.

FIA supports three types of argument:

VALUES OF VOLATILE MARKET QUANTITIES

This data is read from the weights and returns table, which contains data that can change on a daily basis, such

as price, delta, gamma and convexity. Data from this table must refer to a particular security, which need not

be the current security.

Values of market quantities are always referred to as

SECURITY_IDENTIFIER[FIELD_IDENTIFIER]

Page 16 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

where

- SECURITY_IDENTIFIER is the ID code for a security, found in Column 1 of the security master data

table, and

- FIELD_IDENTIFIER is one of “YTM", "TTM", "MD", "CONVEXITY", "SMD", "OAS",

"Z_SPREAD", "PRICE", "VOL", "DELTA", "GAMMA", "THETA", "RHO", "VEGA", and is

always enclosed in square brackets.

For instance, the price of a security with identifier BHP is BHP[PRICE]. If a routine to price a derivative

security called OPTION_BHP requires the price of BHP, this price must be passed as an argument:
OPTION(BHP[PRICE]).

Similarly, the Z-spread of a corporate bond with identifier CORP is expressed as CORP[Z_SPREAD].

Note that

- The security referred to by SECURITY_IDENTIFER must have been set up in the portfolio table. If the

identifier of a security is used that does not exist, FIA will generate an error.

- Security labels must have an argument, and the argument must be one of the data labels in the above list.

If a data label is used that is not defined, FIA will generate an error.

- Labels must be surrounded by square brackets.

- A security can have one, and only one, label for a given security. If you need the values of OAS and Z-

spread for a bond CORP, this must be passed as two separate arguments CORP[Z_SPREAD] and

CORP[OAS], not as CORP[Z_SPREAD, OAS].

- If the requested data does not exist in the security master table, an internal value of NaN (‘not a number’)

will be returned. Plug-ins should always be written to detect this case and to exit with a diagnostic

message.

VALUES OF YIELD CURVES

This data is read from the yield curve table. FIA allows points at a given tenor point on a yield curve to be

passed as a function argument. For instance, the 10-year yield on a USD curve with name USD_CURVE is

expressed as USD_CURVE[10].

Note that

- The curve name must have been set up in the yield curve table. If a curve is referenced that does not exist,

FIA will generate an error.

- Curves must have an argument, and this argument must be a real number, showing the required maturity

point on the yield curve. Negative numbers are accepted, but this will return the shortest maturity yield

available.

- The argument must be enclosed in square brackets.

- If the argument is lower that the shortest quoted maturity for the yield curve, the yield corresponding to

the shortest quoted maturity is returned.

- If the argument is higher that the longest quoted maturity for the given yield curve, the yield

corresponding to the longest quoted maturity is returned.

Page 17 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

VALUES OF INDICES

This data is stored in the index table.

For instance, the value of LIBOR may be supplied to a floating rate note with pricing function FT_FRN by

entering FT_FRN(LIBOR).

- The index must have been set up in the portfolio table. If a non-existent index is accessed, FIA will

generate an error.

- Unlike volatile market quantities and curve values, indices do not require an argument. If an

argument is supplied, an error will be flagged.

MULTIPLE ARGUMENTS

Different types of argument can be mixed and matched for a single plug-in. For instance, suppose an exotic

derivative has an associated plug-in called EXOTIC that requires the value of LIBOR over the last week, the

value of the USD Treasury curve at the 10-year point, and the volatility of the FTSE index. Assuming these

quantities are all stored in the appropriate tables, the plug-in is called as follows:

EXOTIC (LIBOR, USD_TREASURY[10], FTSE[VOL])

Multiple plug-in arguments must be supplied as a comma-delimited list and enclosed in round brackets.

FIA accepts up to 8 arguments for each plug-in.4

PASSING HISTORICAL DATA INTO PLUG-INS

Often, the only additional data required by a plug-in function is the current, or most recent value, of a variable.

For instance, the Black-Scholes pricing routine only requires the current price and volatility of the option’s

underlying security to generate the current price.

However, in many cases a plug-in requires additional historical information on the variable’s value. FIA meets

this requirement by passing a complete history of each variable to the plug-in, up to and including its value at

the current date. FIA’s architecture allows this information to be made available with almost no run-time

penalty.

For instance,

- an inflation-linked bond that uses the Canadian pricing model requires the most recent three values

of the associated RPI (Retail Price Index). By passing a complete history of the RPI to the pricing

function, this information is always available, as long as there is a sufficient history of the RPI in the

index table.

- an option pricing routine requires the volatility of the underlying security over the previous year,

which may not always be available. If the return history of the underlying security is available over the

year, however, its annual volatility can be calculated by using the returns history for the security,

relieving the user of the requirement to supply historical volatility.

4 This number may be increased in future releases, depending on user requirements.

Page 18 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

The time series passed to pricing functions contain both values of the given values and the dates at which they

are quoted. This allows values at particular dates to be retrieved. For instance, an FRN may have its coupon

reset depending on the value of LIBOR on the 1st of each month. By providing a daily history of LIBOR as a

collection of dates and values, the pricing function can always retrieve the appropriate value of LIBOR by

referring to dates, rather than just using the most recent entry.

For more information on the structure of time series used in OpenPricing and OpenRisk, see Appendix A.

Page 19 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

APPENDIX A: WRITING PLUG-IN FUNCTIONS

OVERVIEW

A plug-in is a compiled function […]. Each function must have the signature

An OpenPricing plug-in has the function signature

double f(long t, FT_SECURITY_DATA s, FT_YIELD_CURVE c, ...);

while an OpenRisk plug-in has the function signature

double f(long start_t, long end_t, FT_SECURITY_DATA s, FT_YIELD_CURVE c, ...);

where the data structures FT_SECURITY_DATA and FT_YIELD_CURVE are defined below. Note that the

ellipsis at the end of the function argument should be transcribed exactly as written here.

The library can be written in C, C++, or any other language that allows routines to be compiled into 64-bit DLL

or shared objects that are compatible with the core FIA application.

To write a plug-in that calls a routine in another language such as Python, a wrapper function that can pass

data from C to Python and back is required. Please contact Flametree technical support for more information.

Under Windows, plug-ins should be compiled and linked as 64-bit DLLs (dynamic link libraries).

Under Linux, plug-ins should be compiled as 64-bit shared objects.

Plug-ins written for FIA are 100% compatible with the Flametree FDE analytics engine, and vice versa.

Page 20 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

WRITING AN OPENPRICING PLUG-IN

DATA STRUCTURES

Consider a simple OpenPricing routines with the following signature:

double TEST (long settle, FT_SECURITY_DATA s, FT_YIELD_CURVE c, ...)

settle provides the date at which the pricing calculation is performed. This is supplied automatically from the

analytics engine.

settle is a Julian date. A Julian date is a ‘C’ long int that measures the current date as an offset from

January 1st 4713 BC. Julian dates are used throughout FIA as they can represent maturity dates later than

2038, which is not the case for the conventional struct tm structure in C.

FT_SECURITY_DATA is a ‘C’ structure defined in header file OpenPricing.h. This structure takes the form

typedef struct {

 long start_date;

 long maturity;

 double coupon;

 double coupon_frequency;

 double term;

 double repayment_rate;

 double factor;

 double effective_exposure;

 double strike;

 double cash_rate;

 double user_defined [128];

} FT_SECURITY_DATA;

The values of all fields are filled in automatically, where available, from data supplied in the security master
file. Additional pricing quantities can be passed to the plug-in function via the user-defined array at the end of
the list.

FT_YIELD_CURVE is a set of nested ‘C’ structures as follows:

typedef struct {

 size_t n;

 FT_YIELD_TUPLE *data;

} FT_YIELD_CURVE;

and

typedef struct {

 double tenor;

 double yield;

} FT_YIELD_TUPLE

Page 21 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

The final ellipsis in the plug-in’s signature allows additional parameters to be passed in the form of
FT_TIME_SERIES structures. Up to 8 additional time series may be passed to each plug-in, where each time
series is defined using the structures

typedef struct {

 size_t n;

 FT_DATA_TUPLE *data;

} FT_TIME_SERIES;

and

typedef struct {

 long date;

 double value;

} FT_DATA_TUPLE;

USING ADDITIONAL ARGUMENTS

Plug-ins use some special ‘C’ syntax in order to handle addition arguments. If an extra time series is passed to a
plug-in as an additional argument, its values can be accessed as follows:

FT_TIME_SERIES t1;

va_list ap;

va_start(ap, c); // makes ap point to 1st unnamed arg

t1 = va_arg(ap, FT_TIME_SERIES);

double price = t1.data[0].value;

For a more detailed example that uses several values from the additional time series, refer to the inflation-
linked bond code shown below. Multiple time series can be accessed using the same syntax.

SUPPORT FUNCTIONS

The module OpenPricing.cpp contains the following routines, which may be useful when writing custom plug-
ins. Flametree’s fixed income pricing routines make extensive use of these routines but the user is free to use
alternatives, such as the Boost datetime library.

Name Description

void FromJul (long, int*, int*, int*); Converts Julian date to conventional
date (day, month, year)

long ToJul (int, int, int); Converts conventional date (day,
month, year) to Julian date

long PreviousCouponDate (long, int); Decreases a date by a given number of
months, and applies any corrections
required (eg 31st August becomes 28th
February, not 31st February, or 29th
February on a leap year)

double InterpolateYield (const double, const

FT_YIELD_CURVE&);
Uses linear interpolation to calculate
the yield at a given maturity for the
supplied yield curve

Page 22 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

double price_discounted_cashflow (const long,

const long, const double, const int, const

FT_YIELD_CURVE&)

Given the current date, the date of a
cashflow, and a curve, this routine
returns the value of the cashflow when
discounted at the appropriate rate.

SAMPLE OPENPRICING PLUG-IN CODE

The following code shows how to price a generic bond, and illustrates the usage of the various data validation
routines.

///

// Calculate generic bond price from cash flows, zero curve

///

double FT_BOND_ZERO_CURVE (long j_settle, FT_SECURITY_DATA s, FT_YIELD_CURVE c,

...)

{

 double coupon = s.coupon;

 double frequency = s.coupon_frequency;

 long j_maturity = s.maturity;

 long j_start_date = s.start_date;

 // Check that all compulsory settings are present

 FT_CheckParameterDefined (coupon, "coupon", __FUNCTION__);

 FT_CheckParameterDefined (j_maturity, "maturity", __FUNCTION__);

 FT_CheckParameterDefined (frequency, "frequency", __FUNCTION__);

 FT_CheckCurveDefined (c, __FUNCTION__);

 if (isnan((double)j_start_date))

 j_start_date = 0;

 if (frequency == 0)

 frequency = 1;

 // If bond has already matured, return price of 1

 if (j_settle >= j_maturity)

 return 1.0;

 else

 {

 long j_date = j_maturity; // j_date is used as iteration variable

 // Price repayment of bond's principal

 double price = FT_PriceDiscountedCashflow (j_settle, j_date, 1.0, (int

)frequency, c);

 // Calculate and price all other cash flows, taking account of start

 // date (if set)

 while ((j_date > j_settle) && (j_date > j_start_date))

 {

 price += FT_PriceDiscountedCashflow (j_settle, j_date, coupon /

frequency, (int)frequency, c);

 j_date = FT_PreviousCouponDate (j_date, (int)frequency);

 }

 return price;

 }

}

Page 23 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

WRITING AN OPENRISK PLUG-IN

All information supplied to OpenPricing plug-ins also applies to OpenRisk plug-ins. In particular, the contents of

the structures FT_SECURITY_DATA and FT_YIELD CURVE are automatically supplied to OpenRisk plug-ins.

However, rather than a single date, an OpenRisk plug-in is passed a start and end date. All this information is

supplied automatically.

Additional data can be supplied to OpenRisk routines in exactly the same manner as for OpenPricing routines.

For instance, a routine to calculate inflation carry might have the name ‘Inflation’. As CPI data is required to

calculate this quantity, inflation carry can be calculated for inflation-linked bonds by setting field 6 to

Inflation(CPI_INDEX)

where CPI_INDEX is the name of a CPI index, stored in the Index table.

VIEWING THE VALUES OF OPENRISK CALCULATIONS

If at least one security has an OpenRisk function set, then an additional source of return corresponding to that

function will be displayed in all reports.

The name of the return source will be the name of the OpenRisk function. For instance, if the function is

called ‘Inflation’, then a new column called ‘Inflation’ will appear in FIA’s drill-down reports, in the summary

attribution report, and in all other attribution reports.

SAMPLE OPENRISK PLUG-IN CODE

The following code shows how to calculate inflation carry, and illustrates the usage of the various data
validation routines.

///

// Calculate inflation rate for given index, date

///

double CalculateIR (const long date, const FT_TIME_SERIES t)

{

 if (t.n < 2)

 cerr << "ERROR: Not enough CPI index data for inflation calculation" <<

endl;

 long date_start = t.data[0].date;

 long date0 = t.data[1].date;

 long date1 = t.data[2].date;

 double level0 = t.data[1].value;

 double level1 = t.data[2].value;

 // Calculate unrounded IR

 double uIR = level0 + (1.0 * (date - date_start) / (date1 - date0)) *

(level1 - level0);

 // Return IR rounded to 5 dp

 return (int) (uIR * 100000) / 100000.0;

}

///

//

// Return due to inflation between dates 'start_date' and 'end_date'

// Supplementary_data should be set to 'index', where 'index' is the name of the

Page 24 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

// CPI index associated with this security

//

///

double Inflation (char* risk_name, long start_date, long end_date,

FT_SECURITY_DATA s, FT_YIELD_CURVE c, ...)

{

 FT_TIME_SERIES t;

 va_list ap;

 va_start(ap, c); // makes ap point to 1st unnamed arg

 t = va_arg(ap, FT_TIME_SERIES);

 double IR0 = CalculateIR (start_date, t);

 double IR1 = CalculateIR (end_date, t);

 return (IR1 / IR0) - 1.0;

}

Page 25 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

DATA INTEGRITY IN PLUG-INS

As plug-ins are functionally separate from the host application, it is possible for errors to occur within plug-ins

that are not handled by the core application. Since they are essentially separate programs, FIA cannot ‘know’

what data inputs are expected. For this reason, we strongly recommend that plug-ins perform their own error

checking on supplied inputs.

To make this straightforward, FIA makes extensive use of the NaN (Not A Number) value, as defined in the IEEE

754 standard. A NaN value can be stored in a ‘double’ field but is distinct from any numerical value. The ‘isnan’

function tests whether a given number is a NaN or not.

If a scalar-valued input (such as a coupon, or a strike date) has not been supplied in the user’s data, its value

inside the plug-in will always be NaN. For instance, if no maturity date was supplied in a bond’s security master

record, the value of ‘maturity’ in a pricing plug-in will be ‘NaN’. This makes testing for missing values very

straightforward. Supplementary and user-defined data fields are treated in the same way.

Similarly, if a yield curve has not been set up, its number of elements will always be zero and this can also be

tested.

Note that not every field needs every input to be set up. For instance, a perpetual bond has no maturity date,

so this field need not be provided in the security master data, and a NaN value for maturity may be ignored.

Similarly, a bond that is priced using a market YTM does not require a yield curve for pricing.

When writing custom plug-in functions, we recommend the following checks:

Use the CheckParameterDefined function to check whether required scalar-valued inputs (any item in

structure FT_SECURITY_DATA; any time series value) have been provided. If not, this function displays the

name of the field and the name of the calling function in a pop-up box to indicate what data was missing.

Use the CheckCurveDefined function to check whether yield curve data is available. This function works in

the same way as CheckParameterDefined but for yield curves.

If an error occurs within the plug-in, return NaN (Not A Number). FIA is designed to recognise this value and

exit gracefully.

COMPILING AND LINKING PLUG-INS

The procedure for compiling a plug-in depends on the operating system you are using. The plug-ins directory

contains sample source and header files, together with sample make files that show how to run the build

process. A C or C++ compiler will be required to build plug-ins together with GNU ‘make’ if you prefer to use

our make files.

To verify that you have everything in place, we recommend that you build the sample library from scratch,

using our supplied make files, before you start writing your own plug-ins.

INSTALLING A PLUG-IN

Custom plug-ins must be set up and installed as follows:

- Plug-ins must always be placed in the library subdirectory for FIA, which is currently the same

directory as the core engine. FIA does not require a name or path for any plug-in function.

Page 26 of 26

OpenPricing and OpenRisk manual

C:\USERS\ANDREW\DROPBOX\OPENPRICING AND OPENRISK MANUAL.DOCX

Copyright © Flametree Technologies Pty Ltd 2017

- Each user-defined plug-in must have a unique name.

- Plug-ins can be placed in separate library files or grouped together, as long as all libraries have the

correct suffix for your operating system.

VERIFYING PLUG-IN COMPATIBILITY

When FIA runs, it scans the list of plug-ins provided in the security master table and checks that there is one

and only one function corresponding to the name of each plug-in available in the plug-in libraries.

- If a plug-in uses a function name that is not found in any library file in the plug-in directory, FIA will

abort with an error message.

- If more than one match is found for a plug-in’s name in the library files in the plug-in directory, FIA

will also abort with an error message.

